Congenital, Perinatal and Neonatal Infections

Some infections are more serious in pregnancy than in the non-pregnant state because of the potential for vertical transmission. Infection can pass vertically from mother to fetus/neonate in several ways:

- Across the placenta - infections include *Toxoplasma gondii*, *Treponema pallidum*, *Listeria monocytogenes*, *Plasmodium falciparum* (malaria), rubella and cytomegalovirus (CMV).
- Ascending maternal infection and chorioamnionitis causing fetal infection, usually subsequent to prolonged rupture of membranes.
- Perinatal infection acquired during birth via the haematogenous or genital route. These include human immunodeficiency virus (HIV), herpes zoster virus (HZV), hepatitis B virus (HBV) and *Chlamydia trachomatis*.
- Postnatal infection transmitted via breast-feeding.

Pre-pregnancy or routine antenatal screening can determine the presence or susceptibility to some of these infections, enabling appropriate management to prevent adverse fetal or perinatal outcomes. Always try to consider the possibility of congenital infection when reviewing an unwell pregnant woman.

Screening programmes vary throughout the UK. See the links for the UK regional screening programmes under 'Further reading & references', below.

Whilst infections can occur in utero, birth represents an abrupt transition from a highly protected environment to exposure to a vast array of new pathogens ex utero. Parturition also places the baby in direct contact with maternal blood or genital secretions and infections may result, especially if there was prolonged or early rupture of membranes.

At birth, an infant's immune system remains immature. Some protection is provided by maternal antibodies (IgG) crossing the placenta. This process is less complete in the premature baby, especially if markedly premature. If a mother develops a new infection close to the time of birth, she may remain infectious and will not yet have produced any protective IgG, placing the infant at risk of a more severe form of the disease, as in the case of neonatal varicella. The current definitions are[1]:

- Perinatal period - liveborn baby from 20 weeks of gestation to 7 completed days following the time of birth.
- Neonatal period - liveborn baby from 20 weeks of gestation to 27 completed days, sometimes subdivided into early neonatal (birth to 6 completed days) and late neonatal (day 7 to day 27 completed days).

Within the UK and the Crown Dependencies, infection accounted for 3.1% of stillbirths and 7.3% of neonatal deaths in 2014[1].

Congenital infections

Rubella
See separate Rubella and Pregnancy article.

HIV
See separate Congenital HIV and Childhood AIDS article.

CMV
See separate Cytomegalovirus article.

Chickenpox[2]
See also separate Chickenpox article.

- Varicella infection of the newborn may result from maternal infection near the time of delivery or immediately postpartum, or from contact with a person other than the mother with chickenpox or shingles during this time.
- The route of infection may be transplacental, ascending vaginal or direct contact with lesions during or after delivery.
- If maternal infection occurs 1-4 weeks before delivery, up to 50% of babies are infected and approximately 23% develop clinical varicella, despite high titres of passively acquired maternal antibody.
- Severe chickenpox is most likely to occur if the infant is born within 7 days of onset of the mother's rash or if the mother develops the rash up to 7 days after delivery.

Hepatitis B
See separate Hepatitis B article.

Hepatitis C
Group B streptococci (GBS) [3]

- GBS are found in 12-26% of pregnant women, especially in the urine. Infection has been associated with preterm delivery, and ascending infection following rupture of membranes may result in fetal infection.
- Maternal carriage of GBS is associated with a higher risk of chorioamnionitis and neonatal disease.
- Neonatal GBS disease occurs at a rate of 0.5 cases/1,000 births. The rate is increased to 2.3 cases/1,000 births in women with GBS detected in the current pregnancy.
- If GBS was detected in a previous pregnancy, the likelihood of carriage in a subsequent pregnancy is about 38%, with a risk estimate of neonatal GBS disease of approximately 0.9 cases/1,000 births.
- Neonatal sepsis with associated mortality of 6% occurs in 0.5-3.7/1,000 live births. It can be prevented with intrapartum penicillin in high-risk cases.
- Currently there is no consensus regarding preventative strategies - some centres treat on the basis of risk alone (previous history of intrapartum fever, preterm labour, prolonged rupture of membranes >18 hours); others treat on the combination of screening (third-trimester vaginal and anal swabs) and risk factors.
- Universal screening of all pregnant women, rather than a targeted high-risk approach, may be more effective but even where this occurs, neonatal sepsis still occurs at a level of about 0.5/1,000 live births [4].
- Preventing neonatal GBS remains controversial [5]:
 - Routine bacteriological screening of all pregnant women for antenatal GBS carriage is not recommended.
 - Intrapartum antibiotic prophylaxis (IAP), usually in the form of high-dose intravenous (IV) benzylpenicillin or ampicillin, should be offered to women with GBS bacteriuria identified during the current pregnancy.
 - IAP should be offered if GBS is detected on a vaginal swab in the current pregnancy.
 - IAP should be offered to women with a previous baby with neonatal GBS disease.
 - Antibiotic prophylaxis specific for GBS is not required for women undergoing planned caesarean section in the absence of labour and with intact membranes.
 - Immediate induction of labour and IAP should be offered to all women known to be colonised with GBS with prelabour rupture of membranes at 37 weeks of gestation or more.
 - Women presenting in established preterm labour with intact membranes with no other risk factors for GBS should not routinely be offered IAP unless they are known to be colonised with GBS.
 - If chorioamnionitis is suspected, broad-spectrum antibiotic therapy including an agent active against GBS should replace GBS-specific IAP and induction of labour should be considered.

Listeria monocytogenes
See separate Listeriosis article.

Syphilis [5]
See also separate Syphilis article.

- In many parts of the world, particularly sub-Saharan Africa, congenital syphilis is a significant public health problem. Although it is rare in most affluent countries there has been a slight resurgence recently in several European countries.
- Congenital syphilis is estimated to occur in 25-75% of exposed infants.
- At birth, infection manifests as neonatal rhinitis, osteitis, and skin bullae. Hutchinson’s triad (abnormal teeth, interstitial keratitis and sensorineural deafness) arises later in untreated children.
- Maternal infection is usually detected by antenatal screening using a non-treponemal test (e.g., VDRL) but note there is a risk of false positive results (due to concomitant infection or autoimmune disease) and confirmation with a specific treponemal test (e.g., FTA-ABS) is required.
- Treatment is with parenteral benzylpenicillin.

C. trachomatis

C. trachomatis can be vertically transmitted at the time of delivery from mothers to infants. Approximately 50-70% of infants born to mothers with untreated genital chlamydial infection will become infected, with 30-50% developing conjunctivitis and 10-20% developing pneumonia [6].

See also separate Chlamydial Genital Infection and Ophthalmia Neonatorum articles.

Gonorrhoea

Gonorrhoea is usually asymptomatic in pregnancy. Gonococcal cervicitis is associated with chorioamnionitis and increased risk of prematurity labour. 40% of untreated maternal cases cause ophthalmia neonatorum - presenting with purulent discharge, lid swelling and corneal hazing within four days of birth.

See also separate Gonorrhoea article.

Toxoplasmosis

About 75% of pregnant women are susceptible but seroconversion during pregnancy is uncommon. A third of infants become infected if their mother becomes infected during pregnancy, especially in later pregnancy (but the severity of disease decreases). There is very little good evidence that prenatal education reduces the risk of congenital infection [7].

See also separate Toxoplasmosis article.
Malaria
See separate Malaria in Pregnancy article.

Screening
Routine antenatal screening tests in the UK completed prior to 16 weeks of gestation[8]:

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B surface antigen</td>
<td>To determine chronic carriers.</td>
<td>If positive, administer hepatitis B immune globulin and vaccine to the infant at birth (prevents carriage in 95%).</td>
</tr>
<tr>
<td>Syphilis</td>
<td>To detect active infection.</td>
<td>If reactive, treat with penicillin and consult a GUM specialist.</td>
</tr>
<tr>
<td>HIV antibody</td>
<td>To enable measures to be taken to reduce vertical transmission.</td>
<td>If positive, antiretroviral treatment for both mother and infant reduces vertical transmission rates significantly. Refer to a GUM/HIV specialist.</td>
</tr>
<tr>
<td>Urine culture</td>
<td>Treatment of asymptomatic urinary tract infection is thought to reduce adverse pregnancy outcomes (premature labour) and risk of maternal pyelonephritis.</td>
<td>If culture shows asymptomatic bacteriuria, treat with antibiotics and repeat culture to ensure fully treated.</td>
</tr>
</tbody>
</table>

Surveillance indicates that rates of maternal infection are variable across the country with high concentrations in particular geographical areas. Based on data from women receiving antenatal care in London between 2000-2007, prevalence of HIV infection was 3/1,000, of hepatitis B 11/1,000, of syphilis 4/1,000 and of rubella susceptibility 39/1,000[9]. Uptake of screening amongst this group of pregnant women was between 95-97%.

Currently there are no tests recommended nationally for antenatal screening of CMV, toxoplasma, parvovirus or GBS.

Do not forget that acute maternal infection may occur after screening - in resource-rich settings such as the UK and America, a significant proportion of perinatal transmission of HIV occurs due to infection acquired during pregnancy[10].

Neonatal infections

Serious acute neonatal infections
- The incidence of serious acute infections in neonates is around 2/1,000 live births but the figure rises to 8-9/1,000 in small babies weighing just 1,000 to 2,000 grams and 26/1,000 in those of less than 1,000 grams. GBS is the most frequent cause of severe early-onset neonatal infection in neonates and occurs in 0.5/1,000 UK births.
- Of early-onset neonatal sepsis, 85% presents in the first 24 hours, 5% between 24 and 48 hours, and the remaining 10% over the subsequent four days. Early-onset infections include GBS, Escherichia coli, Haemophilus influenzae, and Listeria monocytogenes and are most likely to have been acquired transplacentally, by ascending or intrapartum infection.
- Diagnosis is complicated by the lack of clear clinical features of infection and very poor localising features. The lack of an effective immune response in the neonate means that infection can spread, rapidly causing significant damage to organs.

If a baby needs antibiotic treatment it should be given as soon as possible and always within one hour of the decision to treat[11].

Serious neonatal infections
These include:

- Sepsis:
 - In the early neonatal period, the most common organisms causing sepsis are E. coli and GBS. Later, coagulase-negative staphylococci (frequently meticillin-resistant) predominate.
 - Blind treatment is with a penicillin plus gentamicin or cefotaxime/cefuroxime. Vancomycin plus gentamicin is used in late-onset sepsis if meticillin-resistant Staphylococcus aureus (MRSA) is found or suspected.

- Meningitis:
 - Typical signs found in older children or adults are not present in a small infant. There may possibly be a bulging fontanelle but this is unreliable and features such as Kernig’s sign and neck stiffness are of no value.
 - There may be depressed consciousness or convulsions.
 - If there is any doubt, a lumbar puncture should be performed, as failure to treat meningitis has such serious consequences.
 - The implicated organisms are totally different in the neonate from older patients. GBS and E. coli are responsible for around two thirds of cases.
Pneumonia:
- This may be acquired through aspiration of the micro-organisms during the delivery process.
- Infection causes pulmonary changes with infiltration, and destruction of bronchopulmonary tissue. Fibrinous exudation into the alveoli leads to inhibition of pulmonary surfactant function and respiratory failure with a presentation very similar to respiratory distress syndrome (RDS).
- Differentiating RDS from infection in a premature baby can be very difficult. Segmental or lobar atelectasis, seen on CXR, may occur in both.

Urinary tract infection:
- Symptoms are similar to the nonspecific ones of other serious acute infections.
- Diagnosis is by examination of a urine sample, if necessary obtained by suprapubic bladder aspiration.
- Treatment should start immediately in the ill child, purely on clinical suspicion.
- Use IV cefotaxime or an aminoglycoside with careful monitoring of blood levels.
- After successful treatment, the urinary tract should be checked for congenital abnormalities.

Clinical indicators of possible early-onset neonatal infection[1]

Red flags
- Respiratory distress starting more than four hours after birth.
- Seizures.
- The need for mechanical ventilation in a term baby.
- Signs of shock.

Other possible indicators

These include:
- Altered behaviour or responsiveness.
- Altered muscle tone - eg, floppiness.
- Feeding difficulties.
- Feed intolerance, including vomiting, excessive gastric aspirates and abdominal distension.
- Abnormal heart rate (bradycardia or tachycardia).
- Signs of respiratory distress.
- Hypoxia - eg, central cyanosis or reduced oxygen saturation level.
- Jaundice within 24 hours of birth.
- Apnoea.
- Signs of neonatal encephalopathy.
- The need for cardiopulmonary resuscitation.
- The need for mechanical ventilation in a preterm baby.
- Persistent fetal circulation (persistent pulmonary hypertension).
- Temperature abnormality (lower than 36°C or higher than 38°C) unexplained by environmental factors.
- Unexplained excessive bleeding, thrombocytopenia, or abnormal coagulation.
- Oliguria persisting beyond 24 hours after birth.
- Altered glucose homeostasis (hypoglycaemia or hyperglycaemia).
- Metabolic acidosis (base deficit of 10 mmol/L or greater).
- Local signs of infection - eg, affecting the skin or eye.

In those under 4 weeks old, temperature should be taken by an electronic thermometer in the axilla. A fever of 38°C or more in this age group indicates high risk of serious illness[2].

Some highly sophisticated markers to rule in or rule out sepsis may be used in specialist units[3]. Inborn errors of metabolism or congenital abnormalities of the cardiovascular or respiratory systems may present in a similar manner to infection.

Investigations should include:
- FBC. White count is very nonspecific and platelets are often low in infection.
- Blood cultures.
- Urine culture.
- Ear, nose and throat swabs.
- Swabs from any obvious sites of infection.
- Lumbar puncture - should be used quite readily.
- CXR with respiratory signs.
- U&Es.
- Blood gases.

Serious neonatal infection has a bad prognostic implication for neurodevelopment and delay is common[4]. This is especially so if the infant is premature. The inflammatory mediators may have an important role in neurotoxicity. There may also have been hypoxia. Oxygen therapy has to be monitored very carefully in infants, especially if premature, as excessive oxygen can cause retrolental fibroplasia. Any baby that has received an aminoglycoside should have hearing assessed. See separate article Premature Babies and their Problems.

Skin infections
Skin infections with *S. aureus* are common. Periumbilical skin infections present a special risk because of the possibility of bacteria passing up the umbilical vein, causing thrombophlebitis and even an hepatic abscess. Infection appears as:

- Pustules - singly or in multiples, without associated redness, almost anywhere on the skin. They can cause a problem in the axillae or groin but rarely spread. They should be treated with antiseptic powder to prevent cross infection.
- Bullous impetigo is less common but potentially far more serious. This presents as large pus-filled blisters that burst to form scabs. Where large areas of skin are involved, the condition is known as scalded skin syndrome. Treatment is with flucloxacillin, IV if necessary, and fluid replacement.
- Paronychia is infection of the nail fold and often involves more than one finger. It may produce pus. Treatment is with an anti-staphylococcal cream.
- Acute mastitis is strictly an infection of subcutaneous tissue, presenting with swelling, inflammation and fever. Treatment is with flucloxacillin and drainage of the abscess if needed.

MRSA is an increasing problem. These organisms may be transmitted perinatally from the mother's skin or genital tract or nosocomially, particularly among premature or sick infants, or acquired in the community after discharge from hospital[15].

Conjunctivitis
See separate *Ophthalmia Neonatorum* article.

Oral thrush

- *Candida albicans* is a common commensal but infection may affect the tongue and the rest of the mouth. It can spread to the gastrointestinal tract, causing diarrhoea and vomiting.
- It presents as a large number of firmly adherent, small, white plaques that may interfere with feeding by making the mouth sore.
- If the lesions are scraped with a tongue spatula, they will readily shift if they are only milk curds but thrush will be adherent.
- Treatment with a topical antifungal such as miconazole may be needed[16].
Further reading & references

- Population Screening Programmes (England)
- Health Screening Programmes (Northern Ireland)
- Screening Scotland
- Screening for Life; Public Health Wales
- Rash in pregnancy; Public Health England

1. Perinatal Mortality Surveillance Report for 2014 Births; National Perinatal Epidemiology Unit
2. Chorioamnionitis in pregnancy; Royal College of Obstetricians and Gynaecologists (January 2015)
11. Antibiotics for early-onset neonatal infection; NICE Clinical Guideline (August 2012)
12. Feverish illness in children - Assessment and initial management in children younger than 5 years; NICE Guideline (Updated August 2017)

16. British National Formulary for Children; NICE Evidence Services (UK access only)

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. Patient Platform Limited has used all reasonable care in compiling the information but makes no warranty as to its accuracy. Consult a doctor or other healthcare professional for diagnosis and treatment of medical conditions. For details see our conditions.

View this article online at: patient.info/doctor/congenital-perinatal-and-neonatal-infections

Discuss Congenital, Perinatal and Neonatal Infections and find more trusted resources at Patient.

Ask your doctor about Patient Access

© Patient Platform Limited - All rights reserved.