Toxic Shock Syndrome

Synonyms: TSS, streptococcal toxic shock-like syndrome (STSS), 'toxic strep'

Definition
Toxic shock syndrome (TSS) is a multisystem inflammatory response to the presence of bacterial exotoxins. Todd first described it amongst children in 1978; the toxins were secreted by *Staphylococcus aureus*. Subsequently it was found to be associated with tampon use in menstruating women and Group A streptococcal infections - the streptococcal toxic shock-like syndrome (STSS). It is now recognised as a consequence of a range of infections associated with toxin-secreting staphylococci and streptococci. Enhanced surveillance of the rate of Group A infections is undertaken by microbiologists in the UK and several European countries.

Pathogenesis
The infecting staphylococcal or streptococcal exotoxin acts as a superantigen, setting off a reactive inflammatory cascade, mediated predominantly by tumour necrosis factor alpha and interleukin-1.

Epidemiology
In the early 1990s there were roughly 40 cases per year in the UK, with 2-3 deaths per year. This has since declined due to change in tampon manufacture, and increased awareness.

Group C and Group G streptococci have been reported to cause invasive disease similar to that classically associated with group A streptococcus.[1, 2]

- The incidence of both TSS and STSS appeared to increase through the 1980s and 1990s but has now stabilised. A UK series showed an incidence of STSS increasing from 1 to 9.5 per million population per year in the 1990s.[3]
- Infections not associated with menstruation have become more common as menstrual cases have declined. The incidence in children is lower than that in adults.[4]
- Both conditions are relatively rare; worldwide background prevalence of TSS is approximately 3/100,000 people.[5]

Possible risk factors
- *S. aureus* cellulitis.
- Wounds (including burns).
- Tampon use (now less relevant) or gynaecological infection.
- Puerperal sepsis.
- Postoperative infections (classical signs of infection may be absent in wound).
- Packed wounds - eg, nasal.
- Sinusitis.
- Tracheitis.
- Recreational intravenous drug use.
- HIV.
- Allergic contact dermatitis.
- *Varicella* spp.
- Influenza A virus.
- There is debate around an association with non-steroidal anti-inflammatory drug use.[4]
Presentation

Presentation is usually nonspecific and patients generally present with flu-like symptoms and can develop a life-threatening TSS in just a few hours. Features may include:

- Fever: this is usually high at approximately 39ºC.
- Rash: this is usually diffuse, macular and erythrodermic (intense widespread reddening of skin). A scarlatiniform eruption, ie widespread fine, red, papular - 'sandpaper-like' with flexural accentuation, may also be seen.
- Hypotension: this may be profound and is due to suppression of myocardial contractility by the toxin.[7]
- Multiorgan dysfunction.
- Desquamation of palms and soles of feet 1-2 weeks after onset.
- Palms, soles of feet, mucous membranes and tongue may be bright red.
- Nausea, vomiting and diarrhoea are relatively frequent presenting features.
- Myalgia and muscle weakness are common.
- Confusion and disorientation may indicate encephalopathy.

Examination should seek evidence of the source of the infection by:

- Close examination of the skin.
- Checking for tampons; gynaecological examination.
- Respiratory examination.

Differential diagnosis

- Cellulitis.
- Any patient with a fever and a rash.[8]
- Meningococcal disease.
- Gram-negative septic shock.
- Erythema multifforme/Stevens-Johnson syndrome/toxic epidermal necrolysis (as drug reaction).
- Heat-related illness.
- Infectious mononucleosis.
- Infective endocarditis.
- Kawasaki disease.
- Viral infection and exanthem.
- Leptospirosis.
- Typhus/other rickettsial infections.
- Cardiogenic shock.
- Listeria monocytogenes infection.
- Typhoid.
- Dengue fever.

Investigations

- Blood cultures are positive in 5-15% of cases of TSS and in approximately 50% of STSS.
- FBC often shows leukocytosis and low platelets.
- U&Es may show raised urea and creatinine, electrolyte disturbance and hypocalcaemia.
- CK and LFTs may be elevated.
- Urinalysis may show microscopic haematuria/myoglobinuria.
- Any wounds should be swabbed for culture.
- Throat swab/others as per clinical suspicion of focus of infection.
- CXR may be useful if there is suspected pneumonic focus.
Management

Early diagnosis and rapid intervention are the key to arresting the cascade of inflammation that leads to rapid deterioration:

- Any persisting focus of infection, such as abscess, wound pack, wound slough or tampon, should be removed immediately, with surgical assistance if necessary.
- Aggressive haemodynamic resuscitation, preferably with central fluid volume monitoring and regular electrolyte testing is crucial.
- Vasopressor agents may be used to manage shock, under expert guidance.
- Any abnormality of glucose levels should be closely managed and normalised. [9]
- Antibiotics should be given early and in sufficient doses:
 - Choice of agent depends on suspected pathogen and local patterns of prevalence and resistance. [10] Cephalosporins and clindamycin provide broad cover that should be effective against relevant organisms. [9]
 - Steroids may play a role in improving survival. [11] Research has shown that a long course of low-dose corticosteroids reduces 28-day all-cause mortality, and intensive care unit and hospital mortality. [12]
 - There is no evidence for the use of activated protein C for treating patients with severe sepsis or septic shock. Activated protein C was therefore withdrawn in 2011. [13]

Prognosis

- Mortality rate for TSS is around 5-15%.
- A fatality rate of up to 64% has been noted in cases of STSS in the UK. [3]
- Recurrence of TSS is found in 30-40% of cases.

Complications

- Recurrence.
- Cardiomyopathy.
- Rhabdomyolysis.
- Acute kidney injury.
- Encephalopathy and cerebral oedema.
- Acute respiratory distress syndrome.
- Hepatic necrosis.
- Thrombocytopenia and marrow suppression.
- Disseminated intravascular coagulopathy (DIC).
- Metabolic acidosis, electrolyte disturbance.

Further reading & references

- Toxic Shock Syndrome Information Service
 10. British National Formulary
 13. Martín-Carvajal AJ et al; Human recombinant activated protein C for severe sepsis and septic shock in adult and paediatric patients, Cochrane Library, Dec 2012

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. Patient Platform Limited has used all reasonable care in compiling the information but makes no warranty as to its accuracy. Consult a doctor or other healthcare professional for diagnosis and treatment of medical conditions. For details see our conditions.
View this article online at: patient.info/doctor/toxic-shock-syndrome-pro
Discuss Toxic Shock Syndrome and find more trusted resources at Patient.

© Patient Platform Limited - All rights reserved.